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\ ABSTRACT
In this paper we consided the problem of establishing the number of
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solutions to the complementarity pfoblm'\ For the case when the Jacobian of

the mapping has all principal minors negative, and statisfies a condition at

infinity, we-ssoue that the problem has either 0,1,2 or 3 solutions. e

] A "
M’\that when the Jacobian has all principal minors positive, and satis-
fies a condition at infinity, the problem has a unique solution. __- 4, 3 -3 -
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~‘,;J Significance and Explanation
‘-‘;€£¥he problem of solving nonlinear programs, certain nonlinear n person
noncooperative games, general equilibrium models with linear production and
several others can be stated as a complementarity problem on a closed convex
and polyhedral cone. _In this paper we consider the problem of establishing the

number of solutions h problems may have. The basic tool used is the homotopy

invariance of the Brouwe degree and the theorems of Gale and Nikaido, and Inada.

For the case when this cone is the non-negative orthant, the underlying functions

§? are continuocusly differentiable and satisfy a condition at infinity, and the

Jacobian has either all principal minors positive or negative, the exact number

of solutions of the problem are obtained. It is shown that for the positive

case, this number is one, and for the negative case, it can be either 0,1,2, or
3. In the negative case, conditions when the problem has a unique solution are
also given. These results can have important applications in general equilibrium
analysis. In addition, when the problem is defined on a closed, convex, poly-
hedral and pointed cone, with a positivity condition on the Jacobian (similar

to the one put by Mas-Colell in a recent extension of the Gale-Nikaido theorem)
using the method of Xojima and Saigal, a uniqueness result is established. Such

complementarity problems arise in the general equilibrium models with linear

production, and have been recently considered by Kehoe.

- -

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.




ON THE NUMBER OF SOLUTIONS
T™O A CLASS OF COMPLEMENTARITY PROBLEMS
M. ¥oiima and R. Saigal

1 Introduction:

tet & be the n-dimensional Puclidean space, K ¢ " be a closed, convex and
polyhedral cone that is pointed {i.e., K n -K = {0}) and K| be the subset of all non-
negative vectors in R" . Given a mapping f.:X - Rn, and an n-vector q in 2" P

this note we consider the problem of satadblishing the mumber of solutions to the problem
of finding an x such that

Xek, t)-qeX , (x,20%) <q) =0 (1.1)
where K  is the polar cone of X , i.e., ' - {y: {x,y) >0 for all x in K).
In case K = r’: , this problem {8 called the non-linear complementarity problem, and has
been considered by several authors. A partial list of these include Cottle (1],
raramardian [4), Megiddo and ¥oiima {11}, Saigal and Simon [16).

Our aim in this paper is to make some statement about the solution set of (1.1) for
all q in nn . For the special case when f {s affine, and K = h? . two such results
exist, namely those of Yoiima and Saigal [6] when the Jacobian of f has all principal
minors negative and of Samelson, Thrall and Wesler [17] and Murty [12]) when the Jacobian
of ¢ has all principal minors positive. For the nonlinear case conaidered in this paper,
we will amsume

1.2) £(0) = 0 and ¢ is continuously differentiable.

And when Ofi(x) has all principal minors negative for each x in K = F? y we will re-
produce the main result of Xojima and Saigal (8] that for any q (1.1) has 0,1,2, or 3
solutions. This will be established with ¢ satisfying the additional assumption
'x‘?:ﬂ in ﬂ': such that hk' + = , there exists

a subsequence J such that either there is an { such that

(1.3) for any sequence

f‘(ak) s-= for kX in J or there is an { such that x: >0 for

all k in J and f‘(-‘) sw for k in 3.

Gponsored by the United States Army under Contract No. DAAG29-75-C-0024. This material is
based upon work supported by the National Science Foundation under Grant No. MC877-03472

and Grant No, MCS78-09525,




In addition, using the method of Kojima and Saiqal (7] (see also Mas-Collel (10]) when

f satisfies (1.2) and K is an arbitrary cone, with an appropriate condition on the

Jacobian Dfix) we will show that for each g (1.1) has a unique solution. When X = R? =

this condition reduces to the fact that Df(x) is & P-matrix (i.e., has all principal

ainors positive), and ¢ satisfies some condition at infinity.

The principal tool used in the proof of the above mentioned results is degree theory.

We will follow the notation of Ortegas and pRheinboldt [14) for this purpose. As suggested
by Megiddo and Eojima (11], to facilitate the use of this theory, we now formulate (1.1)

as an equation solving problem,

Define the projection mapping r:n" * K by

irix)

- xi = min
yeK

fy - =t

and the vectors

X wx = PIX) ¢ - K

In case K = n? « the adbove operation simplifies to

I a‘x’D,-‘

=z = ainio.x )

i

Sow, define the mapping q:Rn .n" by

- e

gix) = x !(l.)

and for some q in w , the problem of solving systems of equations

gixn) = q . 1.4)

n

It can be readily confirmed that for a given q in R , if x solvea (1.1), then

x =x, % =«f(x) +q and 2 =x + x solves (1.4). Also, if x solves (1.4),

then x. solves (1.1).

In section 2, for the case when ¢ satisfies (1.2) and (1.3), we establish gome

properties of the mapping g when K = nf. In section )} we establish the main result

relating to the negative principal minore, in section 4 we prove a sufficient condition




for uniqueness when ¥ is a convex, polyhedral and pointed cone, the Jacobian of f
satisfies certain positivity conditions, and that g is norm coercive. Finally in the
appendix we prove a PL homeomorphism theorem. The results of section 3 can be extended
to an arbitrary cone if a generalization of the theorem of Inada {3] similar to the

extension of the Gale-Nikaido theorem [2] proved by Mas-Colell [10] can be established.

-y




Some properties of the mapping g :

In this section, when x-n:', we establish some important properties of themapping g as

defined in section 1. Let N=i{1,2,...,n) and for each 1 ¢ N, possibly empty, define

0 for {4 I}

atr) = {x ¢ " 1 x, > 0 for 8L x
i =

and I w {o(3) : 1 c N}, e note the I subdivides 2 P S T m”,:) is a subdivided

polyhedron.

In additjon, we note that since f {s continuously differentiable, for each

1N, q! q‘:(!) 1 o) » f‘.“ is continuously differentiable, and if A :‘Dq!(u)

for same x in o(@), the j‘h row Aj of A is uy (the 3”’ unit vector) for 3§ {1
and D!lx'), (the )"’ row of Dpf(x')) for - dE

¥e now establish a

Theorem 2.1, let ¢ satisfy (1.2) and (1.3), and let g be defined as in mection 1.

Then g is nom coercive, i.e., if (xl) is a sequence such that !!xkﬁ + = then

Sq(xk)! > -,

Proof: For the sequence (xk" define yk - (xk)- and zk - l:k)‘ . Since g is con-

tinuous, it is clearly norm coercive {f the sequence ‘Jk? is bounded. Thus aswume

®
'!tki s> =, From condition {1.)), there is a sudsequence J and an {i such that g 0

and ‘r‘lt.)' +» 4= for all k in J . Since 1: - x: , we have q‘(xk! - !‘(zk). and
we have our result. Also, if t‘(zk) . == as 1" + =, then since y: 0, qx(lk)

f (:k) thus ‘q‘(xk)! « ¢m and the theorem follows.

Theorem 2.2. Let f satisfy (1.2) and for each x, Df(x) have all principal minors

negative. Then for each I ¢ N , 9; ! a(1) « 8" {s one to one.
Proof : The theorem holds trivially for I = gi(the empty set), since then 9, - id (the

fdentity map). Now, let ¢ ¢ I ¢ ¥ , and let q(x‘) - q(nz) for some xl,:t? in olI)

Hence

- E - -
'l . f(xl) - lz . f(xz)

. .
’l('l) - 'l“)’ for all { ¢ 1




Ne

i I
pDefine the mapping ![:R.‘l' « 1Y as follows:
let the elements in I be & <4, < ... i, . Then, define a n x |I| matrix 1
th th s ERRE o
P whose j column is u (the x) unit vector). ¢ = p € p (the diagram below
3
may help in understanding .
n . n
e S
-
1 v
i
it =L
.

Since f is differentiable, so ia ll and Dlx(u) - PTDHP:) P and is thus a

principal minor of Df(x). Since Df(x) has all principal minors negative, so does

M!(x) . Also, because of (2.2) fx(vtx.l) - fI(P?x;). Now, using the well known theorem
of Inada [)] (see also Theores 20.4, Nikaido [13)) on a cubical region containing PTx;
T ¢
and P 32 we conclude that
T + T
v xl i 12

- . - -
Also, since x, and x, are in ofl), X, - x2 . Thus, from (2.1) 'l - '2 and

wo have our result.

We now establish a set of sufficient conditions under which g is locally univalent.

Theorem 2.1 (local univalence theorem). let x « & , Df(x) has all principal minors

negative, and x ¢ 0. Then, there is an open neighborhood U of x which g maps U
homomorphically onto giU).
Proof: let x belong to the pleces ol(I,), oI ),...,0(I ). Since x{ 0,1, ¢8 for

3

each j = 1,...,k. Thus det oqx (x) <0 for each § = 1,...,k. The result now follows
3
from Theorem Al in the appendix and Lemma 2.11 of Kojima (6],

e

v
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§3.

The negative case:

In this section we consider the problem (1.1) with K = R? + f satisfies

(1.2)=(1.3) and Df(x) has all principal minors negative. We will prove that for any g ,

(1.1) has 0,1,2 or 3} solutions. Before we prove our main result, we now establish the

degree of the mapping g .

3.1 Calculation of the degree of g:

rollowing Ortega and Rheinboldt (14], given a continuous mapping g On an open set

U,anda ¥y {g(iu), where 3 is the boundary of the set U we denote by deg(g,U,y)

the degree 0f g with respect to U at y . Now, for a given n*n matrix M which

has all principal minors non-zero, define the pilecewise linear mapping

ix) = x o Mx (3.1)

on the subdivided polyhedron (K°,I).

Since M has all principal minors non-zero, each

linear mapping lx 2 Lle(l) is one to one. Also, 1(x) is norm coercive. We can then

prove:

(a) Lot M have all principal minors negative, and M { 0 . Then

deg(i,8",q) = =1 for all q in R .

(b) let M hawe all principal minors negative, and M < 0 ., Then

dag(t,h",q) = 0 for all q in K" .

Proof, et q* > 0 be such that S(q®) = {x:8(x) = q% n 30(1I) = ¢ for every I ¢ N.

From Theorem 1.1, Kojima and Saigal (8], under hypothesis (a), 98(q®) = 1. Hence

doq(l.l".q') = =1 ; and from lemma 2.2, {8], under hypothesis (b)), doq(l,a".q') = 0.

Now, let q « o , and consider the homotopy: for t in [0,1),

Lix,t) = i(x) - (1-t)q°®-tg .

Since 1 is nomm coerciwve, L-x(o) is bounded, and thus from the homotopy invariance

theorem [6.2.2, 14] deq(i,R",q) = deg(i,R",q%) and the theorem follows.

Now, let M = Df(0). Since f satisfies (1.2),

fix) = Mx ¢+ o(x) such that

lo(x)f =0 as Uxd ~0 . Now, for t in (0,1] define the homotopy




Hix,t) = {1-t) i(x) +tgix) ]
(3.2)
= t(x) + ¢t olx)
lemma 3.2, let M hawe all principal minors non-gzerco, Then there exist a > 0, and

¢ » 0 such that #H(x,t)! > ac for all x in the boundary 3B(c) of B(e¢) =

{x 0 < ¢},

Proof: Since N has all principal minors non-zero, the Jacobians of the linear mappings

lx 7 1)ol(l) are non-singular. Thus,there exists an a > 0 such that Hi(x)¥ > 2ad xil

for all x in "yt Now, as folx)! =0 as fxfi +» 0 , there exists an ¢ > 0,

sufficiently small, such that fSo(x)f < ac for all x in B{g) . Thus, from (3.2),

ini(x,e)f » fite)t =~ Bolx)l 2 208 - ac, and , for x ¢ aMlc), HEH(x,t)} 2 ac. i
lemma 3.3, tet ¢ satisfy (1.2), (1.3) and let Df(x) have each principal minor %
negative for all x . Then, for every « > 0 there exists a & > 0 such that for all gq i

with gl < &, S(g) = (x:g(x) = q} < Blc).
Prooft: Assume the contrary. Then, for same ¢ > 0 and every £ > O there exists a g
such that gl < ¢ and §(g) ¢ Blc). Choose Ak *+ 0 and let X, « S(qk) be such

that = ¢ Blc). Now ‘,x‘} is bounded, since otherwise, from Theorem 2.1, qul > -,

A T et S Y T

Thus, on some subsequence s DL Also hgki >¢ thus Ex® > ¢ . But g(xt) s Vo 0.
Hence g(x ) =0 . Let x_«¢ o(I) . Since g(0) = 0, and 0 ¢ c(l) we contradict the
concluaion of Theoream 2.2.

We now prove the main theorem, which {s also a nonlinear version of Theorem 3.1.
Theorea J.4. Let f satisfy (1.2) and (1.3) and let g be defined as in mection 1.

(a) Let Df(x) have all principal minors negative for each x in a': .

and M = DE(0) ¢ 0 . Then, deglg,R",q) = -1 for each q in R .

(b) tet Df(x) have all principal minors negative for each x in n:' p

n

and M = Df(0) < 0 . Then d-q(q.nn.q) =0 for each q in R

Proof: et 5 and ¢ be as in Lemma 3.2 and let 4 > 0 be as in lemma 3.3, and

sufficiently small, so that & < ac. For d > 0 , define 0 ¢ i < min{c/a Ry R B

and for q* = iMd the linear problem

i(x) = q* (3.3

Je




Under the hypothesis (a), there is a d > 0 such that M4 > 0 . Define ' » O

as above and the linear problem (3.3) for gq* = iMd. Using theorem 3.1 (8], this problem

has the unique solution x = id ¢« B(¢), Now consider the homotopy (3.2). u'l(q‘) M) =

# ., since from Lemma }.2 and the cholce of & , for x ¢« abl(¢), UIMH(x,t) - g% >

iMix,t)8 - §q®} > ac~-4 » 0 . Thus, using the homotopy invariance theorem, (6.2.2, 14]

deg(9.5",q%) = deg(g.Blc),q%) = degl(i,Ble),q*) = -1.

Under the hypothesis (b), let 4 >0 and 0 < i < min{c,4)/84i. Then,

the linear problem for q® = id has no solution, Lemma 2.2 (8]. Using the arguments as

above, we can establish that

d-q(q.n".q‘) = doglg,B(c),q®%) = deg(i,Blc),q%) =~ 0 .

Now ,

for q in R" » consider the homotopy: for t in [0,1]}

Lix,t) = gix) +« (1-t)Q® + tq .

from Theorea 2.1, since ’(0)

.

gix)

i{s norm coercive, is bounded. Using

the homotopy invariance theorem (6.2.2, 14), doq(q.lln.q) - d-q(q.Rn,q'), the

theorem follows.

3.2. The Number of solutions:

We now establish the required results on the number of solutions to (1.1) for any

given q .

We now establish a simple lemma.

lomma 1.4,

For some q , let x wsolve (1.4), and let Dfi(x) have all principsal

minors non-2ero. Then there is an open neighborhood U of x such that x is the only

solution to (1.4) in U .
Proof: The proof follows from the fact that, under our hypothesis, Dgx(u) is non-

singular for each 1 such that x is in o(1), and thus, by the inverse function theorem,

R i T o TSN

[5.2.1, 14], x is the only solution of qx(:) = q in a small neighborhood U(l). See
also Corollary 4.7, Mangasarian ([9].

We are now ready to establish our main results:

Theorem 3.5. for each x let Df(x) have all principal minors negative. Then, if
(1) pfto) 0, (1.1) has a unique solution for each gq 40 and g=0,

three solutions for g <« 0 and at most two solutions for O ¢ g s 0

-8-




ot =

T T 5 3.5 TS 5

9% " 0 for at least one |
(14) DE) < 0, (1.,1) has no solution for q § 0 , one solution for q < O,
q - 0 for at least one i , and two solutions for q < 0 .

Proof: From theorem 3.4 for every q in R , under hypothesis (i) dnq(q.u".q) “ =1
and under (ii), d'q(q.kn,q) = 0 . Also, let S(g) be the set of solutions of (1.1).
Now, let q ¢ 0. Then S(q) n o(g) = ¢ . Hence at each x in S5(q), the conditions
of Theorem 2.3 are satisfied, and thus g maps an open neighborhood u‘ of x homeo-
sorphically onto q(U.). From Theorem 1.1, Kojims and Saigal (71, d.q(q.u'.q) & -1.
Using the decomposition of domain [6.2.7, 14), under hypothesis (i), #5{(g) = 1 and
hypothesis (i1), Si{q) = ¢

Now, let q <0 . Then S§(q) n o(4) # ¢, and using Theorem 2.2, x = q .
:. = 0 is the unique solution in a(§). Since gix) = x for x ¢ o{(g) , there
is a neighborhood 'J' of x suwh that doqiq,u'.q) = 1. Also, if y is any other
solution in S(q), doq(q.Uy,q) = =1 for some neighborhood Uv. Thus, using the
decomposition of domain [6.2.7, 14], under hypothesis (i), #5(q) = 3 and under hypoth-
esis (i), #S(q) = 2. Now, let O ¢ q <0 with . 0 for at least one { . Under
hypothesis (i1), q « S{g), and using Theorem 2.2, Si{g)n cl9) = (g}. 1f there is any
other solution x in S(q), dnq(q.vn.q) « =1. Thus an(q.uq.q) 2 1. But arbitrarily
close to q , there exist g' ¢ 0 which have no solution, i.e., doq(q.uq.q') = 0.
this is a contradiction, since degree is locally a constant. Under hypothesis (i),
assume #5(q) > 3. q ¢ §{g). Let these solutions be q.ul....,xk. Since these are dis-

joint, there exist neighborhoods uq, t}l,...,u" of q.:x",....nk respectivelly such that

:;1 A int olg) = ... = tf‘ hint clg) = ¢ . Thus doq(q.ul.q) B iaes W ‘.q(q,v‘,q) = =1,
But, the M(q.l“,q) is =1, hence hq(g.uq.q) 2 1. Since \Jq is open, there exists
a q' 0, sufficiently close to q , in Uq such that M(Q.Uq.q') €0, i.e., it is
zero if s(q)nuq = 4, and =~1 otherwise. But, degree is locally constant; which is

thus a contradiction and our theorem follows.

. W i o orate y A M e T A TS e L e b et
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$4. The Positive Case:

In this section we consider the problem (1.1) with X a closed, convex,

pointed, and polyhedral cone (i.e., for some rs»n matrix A , such that Ax = O =

x =0, K= {xiAx £ 0}),) and that ¢ satisfies (1.2), Now, with an appropriate condi-

tion on the Jacoblan matrix Dfi(x) at x , to be described below, we will prove that

: 1
(1.1) has at most one solution for each q in K" . Incase K = R this condition

reduces to the fact that for all

x outside some bounded region of X 0f(x) has all

principal sinors positive.

4.1. Condition on the Jacobhian Df(x) .

for a given set P in R containing 0 let M, be the subspace spanned by the

net

r, l.e.,

N"h'ay'

e
-
-
-

$ ey
L)
-

1 §
Now, let F be a face of K , {.e., there exiaste an

i

:,_ & {1,...,r} such that

= (x ¢ Ix(Ax)I = 0 for each 1§ « lrf- , Aand let n’, be the subspaced spanned by F

Also, let Pr be the projection onto this subspace, i.e,, b
!P'(l) ~xf » wmin fy-xd 4.1)
¥ '"Y :,
and note that P is a linear majping. Thus

P‘r'Df(l) x’l' .“? .
We now atate the appropriate condition on Dfix):

Condition 4.1: let there exist an open bounded set U {n ¥ such that

Aot r' s Dfix) >0 for all = in VY

dot v' e Dfix) > O for every face ¥ of X

S

4.2 The PCl mapping g

In this section we show that the mapping g is a piecewise continuously i fferenti-

able extension of f on certain subdivision of I" + This subdivision is generated by

the pieces of linearity of the piecewise linear projection mapping PR o K defined by

Irix) - xf = min fy-od .0
ye¥




Let ! be the set of all subsets of %" which are generated by closing l'-l(u\t F)

for some face F of X . 1t is clear that the elements of I are closed and convex.

Also, that " gloe (g restricted to ¢ ) , ¢ in I , is continuously differentiable,

with bg“(:) - PF « gix), where P' is defined by (4.1), and ¢ = closure (P-lnnt Fl).

For some sufficlently large integer = > O , and e = n.....n" {the vector of all

1's in n"). dofine S(m) = {X:Ax < 0O , Ax > -me} . Since K is pointed, S(m) is
compact for each = . let :- be the pleces of linearity of the Pl-mapping

p, R » S(m) defined by

tr.(u) -xf » min ly-ud.
yeSim

In addition, let §'(m) = {x | Pix) = v‘(x!" +  Then, we can prove:

lomma 4.2 let .1"2"""\ be an arbitrary finite set of vectors in u" . For some

sufficiently large B »0, lt ¢« $'lm) foreach 4 = 1,...,k .

Proot, T™his lemma follows from the observation that as m approaches infinity, §'(m)

approaches u" , and that any finite subaset of kﬂ lies in a compact region. Also, see

Figure 4.1.

4.). The Number of Solutions:

Assume that f satisfies conditions (1.2) and (4.1}, and choose an = > 0 , suffi-
ciently large, such that o » ix : Ax « =me} = ¢, Thus, the faces of &H(m) that are
not faces of K 40 not intersect U . We will say that = is sufficiently large it
the above property holds.

Lomma 4.3, tet ® > 0 be sufficiently large, and S(m) be the polyhedron defined in
section 4.2. Then, the PC' extension g, ©Of f/S(m) (f restricted to S(m)) is one to one.
Proof: It can be readily confirmed that under Condition 4.1 the faces of S(m) that
are subsets of faces of ¥ satisfy [Condition 4.1, 7], and by the choice of m > 0 ,

the faces of S(m) that are not subsets of faces of ¥ , do not intersect U , and are
subsets of transiates of faces of ¥ , and thus satisfy (ii{) of condition 4.1, and thus
also satisfy [Condition 4.1, 7]. Now the lemma follows by a proof identical to that of

[Theorem 4.3, 7).

11«
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Pigure 4.1

§'(m) is the shaded set. It is non-convex,
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We can now prove our main theorem;

Theorem 4.4. let f satisfy conditions (1.2) and (4.1). Then (1.1) has at most one

n
solution for each q in R .

Proof; tet q be arbitrary, and let S(g) = {x ; g(x) = g} . Now, let 'l'-z ¢ Sig)

with x‘ ’ :} . From loessa 4.1, for sufficiently large = » 0 , l‘,lz are both members

of §'(m). But q"qu(-) is 1-1 on I, thus q_(:l) re-(uz) . Since xl.nz

are in S§'(m) , q(nl) - q-ul) and q(x’) - g-lxi). we have a contradiction that to

the fact that 9, is 1 - 1., Thus our result follows.

¥e now show a condition that insures that (1.1) has a unique solution for each q

n
in R

Theorem 4.5, let f satisfy the conditions of theorem 4.4. In addition, for each

sequence (’l):-l auch that lu\l « = , lot lqlxt)l s » . Then (1.1) has a unigue

solution for each q in ®

Proof: let x, be arbitrary in K" , and let q* = fix,). Then #5(g) = 1 (from

Theorem 4.4, and the fact that X, € §{9%)). Hence &q(q.nn.q') = +1 . Now, let g

in R" be arbitrary and consider the homotopy

Rix,2) = gin) - (l-%)g® - tq .
Since g is norm coercive, u"(o) is bounded, and thus Qg(q.l“.q) - bg(q.l",q') el

Hence S5(g) # ¢ , and thus the result follows from Theorem §.4.




§5.  Appendix

tat 218" + "

e a plecewise linear mapping on the subdivided polyhedron

as defined (n section 2, {i.e. the mapping ¥la(l) is linear, g0, for some nsn Watrix
L Flo) (x) = A;x . We can then prove:

lesma Al: There exist n*n matrices U and V such that

v §e1

- (A.1)
M v 541

where A’ is the )"h column of the matrix A .

Proof: Define u= A and V= A, . Thus (1.1) holds for I = ¢ or N . Now, let

th n

¢4 1 AN, Then, if u’ is the unit wector in R

-u’no(!)nou)-(l.x‘-o for i ¢ 1} 143

u)«u(nna(m~ﬁ.x:n‘-0 for -1 ¢ 1} I

Since F is continuwous,

AJu,-A‘u’ for § 412

e T T B
and thus (A.1) and we are done.

We now prove our theorem

Theores A.2: tet F: 2" + &" and be piecewine linear on (u“,n. Then, F maps

: & homece nrphically onto # if and only if det A‘ det Ax >0 for all 1 ¢ N,

Proof: The necessity of the condition follows from the Theorem 2.1, Rhienboldt and

Now F is a homeomorphism {f and only

if OFf is, for any nwn nonsingular matrix D . let l>"tJ.l , where U {s defined

1

vandergraft (15]. We now show the sufficlency.

in Lesma A.1. Also det U
1

Ax *» 0 for each 1 . As can be readily werified, the

matrices I , U 'V and U'IAI for 1 ¢ N satisfy the conditions of Theorem 6.1, PR

Kojima and Saigal (7], and thus the sufficiency follows.
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